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Abstract

This paper presents (i) an active learning algorithm for visibly pushdown grammars and
(ii) shows its applicability for learning surrogate models of recurrent neural networks
(RNNs) accepting context-free languages. Such surrogate models may be used for veri-
fication or explainability. Our learning algorithm makes use of the proximity of visibly
pushdown languages and regular tree languages and builds on an existing learning algo-
rithm for regular tree languages. Equivalence tests between a given RNN and a hypothesis
grammar rely on a mixture of A* search and random sampling. Our approach scores by
simplicity and accuracy, shown by its evaluation on a set of given RNNs.

1. Introduction

Context-free languages (CFLs), which are generated by context-free grammars (CFGs),
abound in many application areas, for example when facing formal languages and applica-
tions such as programming languages and compilers, but especially also when processing
natural language or controlled natural language. Visibly pushdown languages (VPLs), intro-
duced by Alur and Madhusudan (2004, 2009), are a robust subclass of CFLs with interesting
closure and decidability properties, as explained in further detail below—and are the class
of languages studied in this paper. The idea is that the underlying pushdown automata are
input-driven (Mehlhorn, 1980), i.e., every letter from the given alphabet is assigned a type
among push, pop, and internal (we therefore deal with a wvisibly pushdown alphabet).

Learning representations or models such as (neural) networks, grammars, or automata
from given examples or by querying underlying systems is an important tool when working
with such languages. It has been considered in the field of machine learning for sequence-
processing tasks such as time-series prediction or sentiment analysis, but also in the field of
grammatical inference (Vaandrager, 2017). While in the first setting, typically, a finite set
of words is given as a training set from which a model such as a recurrent neural network
(RNN) is derived, in the second setting, further queries to a so-called minimally adequate
teacher (MAT) may be asked to shape the learning result. A prominent MAT learning
algorithm is Angluin’s L* for regular word languages (Angluin, 1987).

In this paper, as a first contribution, we present a novel learning algorithm for VPLs,
given a minimally adequate teacher.

An important application area of such a learning algorithm, as pursued in this paper,
is to derive so-called surrogate models of recurrent neural networks (RNNs). RNNs play
an important role in natural-language processing or time-series prediction, amongst others.
While a neural network is often difficult to analyze and to understand, the surrogate model
shares essential features of the underlying network but allows for simpler means for its
analysis and explainability.

As a second contribution, we show that our algorithm can indeed be used for deriving a
so-called visibly pushdown grammar (VPG) usable for explaining the language accepted by
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an underlying RNN. To this end, we perform queries to the network and infer an automaton
model which is then translated into a grammar. The latter provides structural information
of the underlying network which can hardly be obtained from the network directly.
Besides learning surrogate models applicable in verification and explainability settings,
our algorithm in conjunction with machine learning may be used for grammatical inference-
based learning in the setting with only positive examples (words to be accepted by the
language). Surprisingly, machine learning works rather well with only positive examples.
The subsequent learning based on the learned RNN leads to a grammar generalizing the
given examples. However, we do not elaborate further on this idea in the present paper.

Our Approach. As mentioned above, our learning algorithm is for the class of VPLs.
Alur and Madhusudan (2004) established a close relationship between VPLs and regular tree
languages. We exploit this relationship and use an existing learning algorithm for regular
tree languages (Sakakibara, 1992; Drewes and Hogberg, 2007) to derive a grammar-based
representation of a VPL, resulting in a MAT learning algorithm.

This is similar to Sakakibara’s algorithm (Sakakibara, 1992), which infers CFGs in terms
of tree automata learned using structural queries. In particular, a structural membership
query comes with a skeleton, i.e., a tree that puts additional parse structure on top of the
query and whose internal nodes are unlabeled. In our case, we do not have the same notion
of skeleton, but use tree interpretations of the words that are queried.

In fact, Kumar et al. (2006) and Isberner (2015) had already pointed out that it would
be possible to use the algorithm of Sakakibara (1992) for learning regular tree languages
to obtain a tree representation of a VPL, albeit mentioning two potential obstacles for
this. First, the final visibly pushdown automaton is non-deterministic, requiring thus the
exponential cost in obtaining a deterministic one. Furthermore, in contrast to Kumar
et al. (2006) and Isberner (2015), certain structural properties cannot be guaranteed that
are expected from recursive programs. Our work focusing on practical learning of VPLs
shows that these critical issues can be well handled by adapting the improved version of
(Sakakibara, 1992) by Drewes and Hogberg (2007) and by leveraging the computational
power of RNNs.

One advantage of our algorithm as opposed to other algorithms for classes of CFLs
is its simplicity: it is essentially based on the case for tree languages, so it is easy to
understand. Moreover, its correctness essentially follows from the correctness of the tree-
learning algorithm so that, in principle, we can plug-in any other tree-automata learning
algorithm having the same interfaces. Another advantage is its extensibility to non-context-
free languages, insofar as they have a representation as tree languages (Madhusudan and
Parlato, 2011).

Application to RNNs. Our work is inspired by Yellin and Weiss (2021a), who infer
CFGs from RNNs by extracting a sequence of DFAs using the algorithm proposed by Weiss
et al. (2018), and exploiting the notion of pattern rule sets (PRSs), from which the CFG
rules are derived. Experiments show that many interesting context-free RNN languages can
be learned. There are nevertheless some difficulties to overcome. For example, very often
a sequence of extracted DFAs contains some noise, either from the RNN training phase or
from the application of the L* algorithm. Consequently, incorrect patterns are frequently
inserted into the DFA sequence, which can thus deviate from the PRS. To handle this, a



useful voting and threshold scheme has been proposed. As a result, the languages of the
majority of the given RNNs could be recovered in terms of CFGs, while several others were
partially or incorrectly learned.

The class of VPLs is incomparable to the language class handled by Yellin and Weiss
(2021a) (cf. Example 2 in Section 2). It must be fairly noted that our algorithm relies
on a partitioning of the input alphabet into push, pop, and internal symbols, which is not
required by Yellin and Weiss (2021a). However, it turns out that all the 15 benchmark
languages considered by Yellin and Weiss (2021a) are VPLs.

In Yellin and Weiss (2021a), checking equivalence between the given RNN and a hy-
pothesis grammar relies on an orthogonal learned abstraction of the RNN. In our case, the
equivalence query relies on two complementary tests: The first uses an A*-based search
in the given RNN to look for words that are in its language but not in the language of
a hypothesis grammar; the second test samples words from the language of a hypothesis
grammar, which are then checked for (not) being in the language of the RNN.

Apart from two exceptions, the languages from Yellin and Weiss (2021a) are very well
learned with our approach, even some of the languages that are only partially generalized by
applying the other approach. This demonstrates that our algorithm may be a worthwhile
alternative when dealing with structured data (annotated linguistic data, programs, XML
documents, etc.), i.e., in presence of a visibly pushdown alphabet.

Further Related Work. There are a wide range of learning algorithms for regular lan-
guages. Let us mention some of them. Angluin (1982) used reversibility to identify a class
of regular languages from positive data alone using deterministic finite automata (DFAs),
whose states are based on the residual languages or right congruence classes. Then, Angluin
(1987) showed that the class of all regular languages could be learned using the L* algorithm
in the MAT model, where the teacher can answer both membership queries and equivalence
queries. Rivest and Schapire (1993) proposed binary search to determine a single suffix
of a counterexample that causes refinement, while Kearns and Vazirani (1994) suggested
constructing a discrimination tree instead of the observation table. Then, Balcazar et al.
(1997) provided a unified view on these learning algorithms, resulting in the observation
pack framework, i.e., a family of observations that are organized in a certain way to satisfy
certain properties such that one can construct an automaton from them. Isberner et al.
(2014) presented the TTT algorithm, which is extremely efficient, especially in presence
of long counterexamples, thanks to a refined counterexample-analysis and redundancy-free
organization of observations.

Some researchers addressed learning CFLs by adapting learning algorithms for regular
languages. For example, Clark and Eyraud (2007) presented an exact analogue of that
proposed by Angluin (1982) for a limited class of CFLs, i.e., a learnability result could be
established from positive data alone by combining the correspondence of non-terminals to
the syntactic congruence class with weak substitutability. Then, Clark (2010) expanded this
approach by adopting an extended MAT to answer equivalence queries where the hypoth-
esis may not be in the learnable class. Yoshinaka and Clark (2010) extended the syntactic
congruence to tuples of strings, with which one can efficiently learn some sorts of multi-
ple CFGs. The hypothesis grammar calculated by their algorithm is however not always
consistent with the observation tables with respect to the target grammar. This can be



remedied by expanding observation tables, which requires exponential-time computation.
Even though the above algorithms for learning CFLs have shown some promising results,
they are limited to some constrained class. The learnability of the whole class of CFLs is
widely believed to be intractable (de la Higuera, 2005).

Since decades, some approaches have been developed to extract simpler and explainable
surrogate models from a neural network to facilitate comprehension and verification (Thrun,
1994; Omlin and Giles, 1996). New algorithms for extracting (weighted or unweighted)
DFAs from RNNs have been proposed recently, with promising applications in verification
(Weiss et al., 2018; Mayr and Yovine, 2018; Weiss et al., 2019; Mayr et al., 2020). They may
also turn out to be useful for generalizations to other, more complex classes of languages.
Up to now, however, there has been little research on extracting CFGs from RNNs. With
the exception of (Yellin and Weiss, 2021a), existing approaches rely on an RNN augmented
with external stack memory, either continuous or discrete (Das et al., 1992; Sun et al., 1997).
In such a hybrid system, besides the classical input symbols, the input includes also what
is read from the top of the stack.

Outline. Section 2 presents basic notions such as CFLs, CFGs, and VPLs. Trees and tree
automata are presented in Section 3. In Section 4, we recall the tree-automata learning
algorithm that we exploit, in Section 5, to learn grammars for VPLs. In Section 6, we apply
our algorithm to inferring grammars from RNNs. We conclude in Section 7.

2. Context-Free and Visibly Pushdown Grammars

In this section, we recall standard notions and concepts such as context-free languages and
grammars. We also present their subclass of visibly pushdown languages and the associated
grammars our learning algorithm is based on.

2.1. Context-Free Languages and Grammars

Let ¥ be an alphabet, i.e., a nonempty finite set. A word over X is a finite sequence
w = aj...a, of letters a; € X. The length |w| of w is n. The unique word of length 0 is
denoted by e and is called the empty word. By *, we denote the set of all finite words
over ..

Any set L C X* is called a language. For two languages L1, Lo C X%, we let L1 & Lo
denote their symmetric difference, i.e., the language (L1 \ L2) U (L2 \ L1).

For a finite set U, we denote by P(U) its powerset and by |U]| its size (the number of
elements it contains).

Definition 1 A context-free grammar (CFG) over ¥ is a tuple G = (N, S,—) where N
is a finite set of nonterminal symbols with N N'YX = (), S € N is the start symbol, and
— C N X (XUN)* is the finite set of rules. A rule (A, w) € — is usually written as A — w.

The language L(G) C ¥* of G is defined using a global rewrite relation = C (XU N)* x
(XU N)* defined by uAv = uwv for all rules A — w and w,v € (XU N)*. With this, we
let L(G) ={w e ¥* | S =* w}.



We say that L C 3* is a context-free language (CFL) if there is a CFG over X such that
L(G) = L. It should be noted that the class of CFLs enjoys equivalent characterizations,
e.g., via pushdown automata.

Example 1 For n > 1, consider the grammar G, given by S — p;Sq;S | € (for all
i € {1,...,n}) over the alphabet ¥,, = {p1,...,Pn,q1s---,qn}. Then, L(G,) is the Dyck
language of order n of well-bracketed words, where p; is an opening and g; its corresponding
closing bracket.

2.2. Visibly Pushdown Languages and Their Grammars

The class of wisibly pushdown languages has been introduced by Alur and Madhusudan
(2004, 2009). It was originally defined in terms of visibly pushdown automata, but can
be equivalently characterized by a subclass of CFGs. VPLs constitute a robust class that,
unlike the class of all CFLs, is closed under complement.

The idea is to assign to every letter from the given alphabet a precise role. Speaking
in terms of automata, every symbol is either a push, a pop, or an internal symbol. This
clearly is a restriction: A pushdown automaton recognizing the CFL {a"ba™ | n € N} has
to perform a certain number of push operations while reading the first n occurrences of
a, and pop operations when reading the remaining occurrences of a. On the other hand,
{a™b" | n € N} can be recognized by a pushdown automaton where a stack symbol is pushed
when reading an a and a stack symbol is popped when reading a b. Accordingly, a wvisibly
pushdown alphabet is an alphabet ¥ = Y,sp W Xpop W Xige that is partitioned into push,
pop, and internal letters. In the following, ¥ will always denote a given visibly pushdown
alphabet.

Definition 2 A visibly pushdown grammar (VPG) over ¥ is a CFG (N, S, —) such that
every rule has one of the following forms (where A,B,C € N): A — ¢ or A — bB with
b € Nine or A — aBbC with a € Xpysh and b € Ypop.

A language L C ¥* is called a wvisibly pushdown language (VPL) over 3 if there is a
VPG G over ¥ such that L(G) = L.

Example 2 For n > 1, consider again the grammar G, from Example 1. In fact, G,
is a VPG for Xpush = {P1,---,Pn}s Zpop = {q1,---+qn}, and Zine = 0 so that L(G,) is a
VPL. Another example of a VPL is {a™zb™ | n € N} where Xpush = {a}, Ypop = {b}, and
Yint = {x}. This language is not captured by the PRS-formalism presented by Yellin and
Weiss (2021a) (cf. (Yellin and Weiss, 2021b, Section C.3)).

We observe that, due to the form of permitted rules, a VPL L can only contain words
w € ¥* that are well-formed in a certain sense. The set Ws, of well-formed words over ¥ is
defined as the language L(Gyx) of the “most permissive” VPG Gy = ({S}, S, —) with set
of rules {S§ = c}U{S = bS | b€ Eint} U{S = aSbS | a € Epysh and b € Xpop}-

Remark 3 The general framework by Alur and Madhusudan (2004, 2009) can also cope
with words that have unmatched push or pop positions. We restrict here to well-formed
words, as the presentation is slightly simpler. Howewver, the algorithms can be extended
straightforwardly to the general case.
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Figure 1: A nested word Figure 2: Its encoding as a tree
With w = ay ...a, € Wy, we can associate a unique binary relation ~ C {1,...,n} X
{1,...,n} connecting a push with a unique pop position: For i,j € {1,...,n}, welet i ~ j

if i < j, ai € Epush, aj € pop, and a;q1 ...aj_1 is well-formed. We call the pair (w,~)
(with w € Wx)) a nested word. A nested word over ¥ with ¥pusn = {a, b}, Xpop = {a, b},
and Y = {c} is depicted in Figure 1. We do not exploit nested words in this paper, but
it is helpful to think of well-formed words as nested words when we encode them as trees.

3. Trees and Regular Tree Languages

The reason why VPLs are so robust is that they are close to tree languages. In fact, nested
words as introduced in the previous section can be represented as trees. Trees are defined
over a ranked alphabet, i.e., an alphabet ' =T'ow Iy W...w I, that is partitioned into
letters of arity k € {0, ..., kmqes} where kpqp € N is the maximal arity. Unless otherwise
stated, we let I' be a fixed ranked alphabet.

A tree t over I' is a term that is generated according to the grammar t ::= a(t,...,t),
~——

k times
where k ranges over {0,...,knq}t and a over T'y. Figure 2 depicts a syntax-tree-based
representation of the tree a(a(c(()),b(b(1(),a(1())))),b(2())) over the ranked alphabet
given by I'o = {0}, T'y = {a, b, ¢}, and T'y = {a, b}.

The size |t| of ¢ is the number of its nodes, i.e., the number of occurrences of symbols
from T". Let Trees(I') denote the set of all trees over I'.

The algorithm from Drewes and Hégberg (2007), on which our approach is based, infers
regular tree languages in terms of tree automata (later, when a tree automaton represents
a VPL, we will be able to extract a corresponding VPG representation).

Definition 4 A nondeterministic finite (bottom-up) tree automaton (NTA) over I' is a
tuple B = (Q, 9, F) where Q 1is the nonempty finite set of states, F C @ 1is the set of final
states, and 6 : Uyeqo,. ot (T X Q") — P(Q) is the transition function. One usually writes
d(al(qi, ..., qr)) instead of 6(a,q1,...,qk).

We call B is deterministic (a DTA) if |0(a(q1,-..,qx))| = 1 for all arguments a,qi, ..., qx.
Then, the transition function can be seen to be of type § : Uke{o,...,kmm}(rk‘ xQF) — Q. We
let DTA(T') denote the set of DTAs over T'.

From &, we obtain a function 4 : Trees(I') — P(Q) letting, for an arity k € {0, ..., kmaz }»

A~

a < Fk, and t1,...,l € Trees(F), 5(a(t1, . ,tk>) = Uq1€5(t1),..,,qk€3(tk) (5(a(q1, . ,qk)). We
can now define the tree language recognized by B as T(B) = {t € Trees(') | 6(t) N F # 0}.



In the following, we will call a tree language T' C Trees(I") regular if it is recognized by
some NTA.

We now state some important and well-known facts about tree automata. For more
details, we refer the reader to (Comon et al., 2007).

Fact 1 (minimal DTA) For every NTA B = (Q,6, F), there is a unique (up to isomor-
phism) minimal DTA B' = (Q', &', F") such that T(B') = T(B). We can assume |@Q’| < 29I,

The index of a regular tree language T is the number of states of the minimal DTA
recognizing 7.

While DTAs capture the class of regular tree languages, deterministic top-down finite
tree automata (Comon et al., 2007), which we do not define here, are strictly less expressive.

Fact 2 (membership and emptiness) (i) Given an NTA B and a tree t € Trees(T'),
one can decide in polynomial time whether t € T(B). For DTAs, there is a linear-time
algorithm. (ii) For a given NTA B, one can decide in polynomial time whether T(B) # ().

4. Learning Deterministic Tree Automata

In her seminal work, Angluin (1987) provided the algorithm L*, which can infer a determin-
istic finite automaton for a given regular word language that can only be accessed via two
types of queries: membership queries (MQs) and equivalence queries (EQs). The algorithm
has later been extended, first by Sakakibara to CFGs and then by Drewes and Hogberg
(2007) to tree automata. The latter algorithm, called TL* in this paper, can infer a DTA
over a fixed ranked alphabet I" for a given (unknown) regular tree language 7. Hereby, T can
be accessed through membership queries and equivalence queries, which are implemented by
“oracle” mappings MQiyee : Trees(I') — {yes,no} and EQtee : DTA(T') — {yes} U Trees(T'):

e We say that MQyee is sound for T' if, for all t € Trees(I'), MQyee(t) = yes iff t € T'.

e We say that EQee is counterexample-sound for T if, for all B € DTA(I') and t €
Trees(I") such that EQtee(B) = ¢, we have t € T' @ T'(B).

e We call EQqee equivalence-sound for T if, for all B € DTA(T") such that EQgee(B) =
yes, we have T' = T'(B).

Ideally, one assumes that EQ;ee, which checks the current hypothesis computed by the
learning algorithm, is both counterexample- and equivalence-sound. However, in practice,
this is not always the case. In fact, in our experiments, we will make weaker assumptions
on the mapping EQ ec-

The algorithm TL* by Drewes and Hogberg (2007) takes as input a ranked alphabet T’
and two functions MQyee : Trees(I') — {yes,no} and EQree : DTA(I') — {yes} U Trees(T).
If TL*(T', MQtrees EQtrec) terminates, it outputs a DTA over T

Fact 3 (Drewes and Hogberg (2007)) Let T C Trees(I') be a regular tree language, say
with index n. Suppose MQyree 15 sound for T and that EQqree s both counterexample- and
equivalence-sound for T. Then, TL*(I', MQtree, EQtree) terminates and outputs the unique
DTA B with n states such that T(B) = T. The overall running time is polynomial in |T|,
nkmer - and the mazimal size of a counterezample returned by EQiree-



In the next sections, k4, will be fixed so that we deal with a polynomial-time algorithm.

5. Learning Visibly Pushdown Grammars

In this section, we exploit tree-automata learning for the inference of VPLs in terms of
VPGs. The derived algorithm will then be exploited to extract grammars from RNNs.

5.1. Encoding Nested Words as Trees

The main link between words and trees is provided by an encoding of well-formed words as
trees over a suitable ranked alphabet (Alur and Madhusudan, 2004, 2009).

Let ¥ = Ypush ¥ Xpop W Mint be a visibly pushdown alphabet. To encode words from
W as trees, we introduce a suitable ranked alphabet I' = 'y W I'; W I’y letting 'y = {0},
' = Xpop U Zint, and I'y = Xh. That is, the maximal arity is 2. To a well-formed word
w € Wy, we inductively assign a tree (w) € Trees(I') as follows: (i) We let (e) = O().
(ii) If w = awibwy such that a € Ypush, b € Xpop, and wy and wo are well-formed, then
(w) = a({w1),b(wa2))). (iil) If ¢ € Bipy and w is well-formed, then (cw) = c¢({w))). The
encoding of the well-formed word from Figure 1 is illustrated in Figure 2.

Given L C Wy, we let (L) = {{w) | w € L} C Trees(I"). Moreover, we let Tr = (Wx))
be the set of trees that encode a well-formed word. Note that (.) : Wx — Tr is injective
and, therefore, a bijection. Indeed, its inverse mapping, which we denote by [.], is given by
[30] = e, [a(t1,b(t2))] = a[t1]b[t2] and [e(t)] = c[t]. For T'C Tr, let [T] ={[t] | t € T}.

Let us state some known facts on the relation between VPGs and NTAs/DTAs due to
Alur and Madhusudan (2004, 2009).

Fact 4 For every VPL L over 3, there is an NTA (or DTA) B over I such that T'(B) =
(L). In particular, there is a DTA Bparse over I' with a constant number of states such that
T(Bparse) — 7}‘

As we will extract grammars from tree automata, the following is particularly important:

Fact 5 Let B be an NTA over T' such that T(B) C Tr. One can compute, in polynomial
time, a VPG nta2vpg(B) over ¥ such that L(nta2vpg(B)) = [T'(B)].

We give the translation of an NTA into a VPG, as the latter will yield the representation
of a VPL learned in terms of the NTA. Suppose B = (@, 6, F') is an NTA over I" such that
T(B) C Tr. We define nta2vpg(B) = (N,Z,—) as follows. In fact, instead of just one start
symbol, we assume a set of start symbols Z C N, which is easily seen to be equivalent.
Intuitively, the grammar derives a run of the NTA top-down, where states are successively
replaced with input letters. So we let N = @ and Z = F'. Moreover, the set of rules contains
(i) § = e for all ¢ € 6(11()); (ii) § — cq for all ¢ € Bint, ¢ € Q, and § € d(c(q)); (iii) § — apbg
for all a € Epyush, b € Xpop, and p,q, ¢, ¢ € Q such that ¢’ € §(b(q)) and ¢ € d(a(p,q)).

For completeness, let us mention some connections with visibly pushdown automata
(VPAs), which are effectively equivalent to VPGs wrt. expressive power so that we could
also learn VPAs instead of VPGs (cf. (Alur and Madhusudan, 2004, 2009) or Appendix A
for the definition of VPAs). For an NTA B over I' such that 7(B) C 7Tr, one can compute,



Algorithm 1 Implementing MQiee in Algorithm 2 Implementing EQi e in terms

terms of MQyyp) of EQypl
1 MQtree(t): 1 EQtree(B):
2 if ¢ € T(Bparse) 2 if T(B) € T'(Bparse)
3 then return MQyp([t]) 3 then return EQ,(B)
4 else return no 4 else
5 pick small t € T'(B) \ T'(Bparse)
6 return ¢

in polynomial time, a VPA A over ¥ such that L(A) = [T'(B)]. Conversely, for a VPA A
over X, one can compute, in polynomial time, an NTA B over I' such that T'(B) = (L(A)).
Hence, there is also a DTA for (L(A))) of exponential size. In general, this exponential
blow-up cannot be avoided even when we start from a deterministic VPA.

5.2. Learning VPLs in Terms of VPGs

We now present an algorithm, called VPL* in the following, that learns a VPL L C Wy in
terms of a DTA for the tree language (L) C 7Tr that can then be translated into a VPG
according to Fact 5. Essentially, we rely on the algorithm TL*. However, equivalence and
membership queries are now answered wrt. the VPL L. More precisely, we deal with a
mapping MQyp : Ws. — {yes,no} and a partial mapping EQ,p : DTA(I') — {yes} U Tr
whose domain is the set of DTAs B € DTA(I") such that T'(B) C Tr:

e We call MQ,p; sound for L if, for all w € Wy, we have MQypi(w) = yes iff w € L.

e We say that EQ.p1 is counterezample-sound for L if, for all B € DTA(T") such that
T(B) € Tr and all t € Tr, EQypi(B) =t implies [t] € L @ [T(B)].

e We say that EQyp is equivalence-sound for L if, for all B over I' such that T'(B) C Tr,
EQupi(B) = yes implies L = [T'(B)].

Our algorithm VPL* for learning VPLs uses TL* as a black-box. Therefore, we define a
mapping MQtyee : Trees(I') — {yes, no} and a mapping EQtce : DTA(T') — {yes} U Trees(T")
that implement the membership and equivalence queries for tree languages, respectively
(cf. Algorithms 1 and 2). The algorithm VPL* then simply calls TL* with parameters
(T, MQtree, EQtree) and translates the resulting DTA into a VPG (Algorithm 3).

Algorithm 1. Membership query MQgyee(t) with t € T'(Bparse) = Tt is answered in terms
of MQypi([t]) (line 3). If, on the other hand, t & T'(Bparse), the query returns no (line 4).

Algorithm 2. Recall that we are looking for a tree automaton for the language 7' = (L)),
which is included in T'(Bparse). We will, therefore, first check whether this inclusion also
applies to the current hypothesis DTA B, i.e., whether T'(B) C T'(Bparse). If not, then we
can find (efficiently) a “small” tree t € T'(B)\ T (Bparse), which serves as a counterexample to
the equivalence query (line 5). So suppose that T'(B) C T'(Bparse). Let us assume that EQyyp
is both counterexample- and equivalence-sound. If it returns a tree ¢ = EQypi(B), then



Algorithm 3 VPL*
1 B+ TL*(I', MQtree; EQtree) /* MQiree and EQypee from Algorithms 1 and 2 %/
2 return nta2vpg(B)

[t] € L ® [T(B)] so that ¢ can indeed be used to refine the hypothesis B. If, on the other
hand, EQp1(B) = yes, then L = [T(B)], i.e., T(B) = (L)), so that we can return B as a
suitable tree-language representation. Algorithm 3 then returns the VPG G = nta2vpg(B).
According to Fact 5, we have L(G) = [T'(B)] = L.

Correctness of VPL* are stated in the following theorem (cf. Appendix B for the proof):

Theorem 5 Let L be a VPL and B be the minimal DTA such that T(B) = (LY. Assume
MQyp1 is sound for L and that EQyyp) is both counterexample- and equivalence-sound for L.
Then, VPL* (Algorithm 3) terminates and eventually returns a VPG G of size polynomial
in the size of B such that L(G) = L. The overall running time is polynomial in |X|, the index
of B, and the mazimal size of a counterexample returned in lines 3 and 6 of Algorithm 2.

Note that the size of the returned VPG G is at most exponential in the size of a minimal
(nondeterministic) VPA recognizing L.

6. Experiments

We applied Algorithm 3 to recurrent neural networks (RNNs) in order to extract VPGs.
We implemented it in Python 3.6, using the Numpy library.! Moreover some code from
(Yellin and Weiss, 2021a, https://github.com/tech-srl/RNN_to_PRS_CFG) was used for
comparisons. All benchmarks were performed on a computer equipped by Intel i5-8250U
CPU with 4 cores, 16GB of memory, and Ubuntu Linux 18.03.

Recurrent Neural Networks. Just like automata, RNNs can be seen as language ac-
ceptors. For the purpose of this paper, it is enough to think of an RNN R as an infinite
automaton with state space R%™, for some dimension dim > 1, along with a mapping from
R9™ to R so that R finally computes a (score) function R : ¥* — R. Given a threshold ¢ € R,
we then obtain its language as L(R) = {w € ¥* | R(w) > t}. Several well-known archi-
tectures are available to effectively represent RNNs, such as (simple) Elman RNNs, LSTM
(Hochreiter and Schmidhuber, 1997), and GRUs (Cho et al., 2014). Generally, depending
on the architecture, the expressive power of RNNs goes beyond the regular languages. This
is why it is worthwhile to study extraction methods for classes of CFLs.

Methodology and Results. The 15 CFLs considered by Yellin and Weiss (2021a) are
given in Table 2, together with the CFGs from Table 1. For conciseness, they are defined
in terms of general CFGs. However, it turns out that all of them are VPLs. In most cases,
there is arguably a canonical partition of the alphabet into a visibly pushdown alphabet.
For all these VPLs, we considered the RNNs provided by Yellin and Weiss (2021a), which
were trained on sample sets generated by a probabilistic version of a corresponding CFG.

1. In accordance with the double-blind review process, if the paper is accepted, the code will be made
available publicly on github at publication time.
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Table 1: Definition of some CFLs (X and Y are finite sets of words)

L(X,Y): RE-Dyck(X,Y): Dycky < X:
S —e|xSy S — zAy S — p1Aq
(forallz € X andy €Y) A—zAy| AA e A—=plAq | AA e

(forallz e X andy €Y) (for all z € X)

Dyck,,: Alternating: Dycky < X:

S — piAg; S—A|B S — p;Ag;

A—pAg | AA e A—(B)|e A—pilg | AAe |z

(for all i € {1,...,n}) B — [A] e (for all 4 € {1,2} and z € X)

In our experiments, we used a Kearns-Vazirani variation of TL*. A query MQypi(w) for
a well-formed word w was answered according to the given RNN R, i.e., MQypi(w) = yes
iff w e L(R). To answer a query EQ,p(B), we used two independent subroutines that look
for counterexample words (of length under 30):

(i) We chose 1500 random words in the current hypothesis language [T'(B)].

(ii) We generated a set P (performed once in the beginning of the run) of positive ex-
amples from the RNN language (only well-formed words; timeout of 60 seconds).
To do so, we used the A* search algorithm (cf. (Russell and Norvig, 2020)) on the
reachability graph induced by the RNN states, along with the evaluation function
fw) = w72 (X esa Rww')) /|9, where d = 4 and R(w) is the score the RNN
gives to w. By adding |w| ™2, we gave priority to shorter length. Note that the function
f strongly depends on the implementation of the RNN and its language. Then, we
sorted P according to the length of the words (the shorter the better) and the score
of the RNN (the higher the better). We kept only the best 1500 examples.

Note that EQ.p is counterexample-sound for L(R) but not necessarily equivalence-
sound. However, it is sufficiently precise in practice. Though the given trained RNNs have
imperfections, the intended languages are learned in most cases. Table 2 indicates the time
needed to learn a VPG, averaging across several runs, and the number of rules extracted.
In most runs, the extracted VPGs are equivalent to the respective CFGs the RNNs were
trained on. Exceptions are L14 and L5 for which we obtain grammars under-approximating
the respective languages. This happens due to structural errors in the given RNNs.

To give a (successful) example, Table 3 depicts the grammar that was output for Ljg.

Fixing Mistakes Variation. The previous result can easily be ruined by a wrong sample
of words. For example, we could pick a word that is in the RNN language but not in the
original language. To mitigate this problem, one can do the following: Denote by P the set
of positive examples generated from the RNN, let H be the current hypothesis grammar,
and let pos(H) = |P N L(H)|/|P|. Assume that H comes with a counterexample w, and a
new hypothesis H'. If pos(H') < pos(H), then we keep refining both of them, but making
sure that w. cannot be a counterexample for H. In the end, we return the hypothesis
with the highest “probability”. For example, by increasing the sampling length from the
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Table 2: Results for learning RNNs
Visibly Pushdown Alphabet

Language Push Pop Int #Rules Time
Ly L({a},{b}) {a} {o} 3 Is
Lo L({a,b},{c,d}) {a,b} {c,d} 9 23s
L L({ab,cd}, {ef,gh}) {a,b,¢c,d} {e,f,g,h} 13 74s
Ly L({ab}, {cd}) {a,b} {c,d} 4 1s
Ls L({abe}, {def}) {a,b,c} {d,e, f} 5 1s
Lg L({ab, c},{de, f}) {a,c} {d, f} {b, e} 10 49s
Ly Dyck, {p1,p2} {q1,¢2} 19  69s
Lg  Dycks {p1,p2.p3}  {a, @2, a3} 28 Tds
Ly Dyck, {p1,...,pa}t {a@1,--.,qa} 37 79s
Liy  RE-Dyck({(abcd},{wzyz)}) {(,a,b,c,d} {w,z,y,2,)} 10 Ts
L1 RE-Dyck({ab,c},{de, f}) {a,c} {d, f} {b, e} 27 59s
Lo Alternating {G[} 0,1} 5 2s
Lis  Dyck, <{a,b,c} {p1} {1} {a,b,c} 19 66s
Lis  Dycky<{a,b,c} {p1,p2} {a1, 02} {a,b,c} - 65s
Lis  Dyck, < {abe,d} {p1} {a1} {a,b,¢c,d} - 51s

Table 3: Learned VPG for Ly with start symbol A;
A1—>(A2)AO Ay — al32z A Ay — cAs A A5—>dA1wA0 A6—>(A2)A1
Ay — ¢ As — DALy A As — dAgwAg As — dAgwAy Ag — (Ag) Ag

RNN (30 — 40) and the size of the sample set (1500 — 2000), we ruined the extraction of
language Lg, but using the procedure above we manage to fixed this issue.

Agnostic Learning. Some criticism might be given to the fact that we assume the visibly
pushdown alphabet to be known. To solve this issue, we generated a set P of positive words
from the RNN like before. Using P, we examined all the possible visibly alphabets (there
may be several), picked the best suited alphabet (with the least number of internal symbols),
and continued learning. We succeeded in 8 of the 13 languages that were successful in the
non-agnostic case.

7. Conclusion

We presented an algorithm to learn VPLs in the MAT framework. As an application,
we focused on the extraction of grammars from RNNs. Our experiments suggest that the
algorithm is a suitable alternative to current approaches when we deal with structured data.
Learning VPLs has potential applications in formal verification (Alur and Madhusudan,
2004, 2009), so it would be worthwhile to conduct an evaluation in that domain, too.
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Appendix A. Visibly Pushdown Automata

Though we are principally interested in inferring grammars, we give here the definition of
visibly pushdown automata, which also constitute a characterization of the class of VPLs.

Definition 6 A visibly pushdown automaton (VPA) over ¥ is a tuple A = (Q,S,0,t, F)
containing a finite set of control states (), a nonempty finite set of stack symbols S, an
initial state v, and a set of final states F C Q. Moreover, 6 = (dpush, Opop, Oint) @S a collection
of transition functions dpush : @ X Ypush — P(Q X S), Opop : @ X Xpop X S = P(Q), and
Jint : @XXine — P(Q). We call A deterministic if all transition functions map all arguments
to singleton sets.

A VPA recognizes a language L(A) C ¥*. Intuitively, it is the language of an infinite
automaton whose states (we actually say configurations) are pairs (¢q,0) where ¢ € @ is the
current control state and o € S8* is the current stack contents. With this, in the infinite
automaton, we have a transition (g,0) % (¢/,0’) if there is A € S such that one of the
following holds:

® a € Ypysh and (¢, A) € dpush(g,a) and o' =0 - A
o 0 € Xpop and ¢’ € dpop(q,a,A) and o =0’ - A
e a €Y and ¢ € dine(g,a) and o' = 0o

We call (q,0) a final configuration if ¢ € F' and o = . Moreover, (¢,¢) is the only
initial configuration. Finally, we define L(A) to be the language recognized by this infinite
automaton in the expected way.

Fact 6 (Alur and Madhusudan (2004, 2009)) Let L C ¥*. Then, L is a VPL over X
iff there is a VPA A over ¥ such that L(A) = L.

Appendix B. Proof of Theorem 5

Proof By Fact 5, we have to show that calling TL*(T", MQ¢ee, EQtree) returns, in polynomial

~ ~

time, a DTA B such that T'(B) = T(B). We will show that MQiee is sound for T'(B) and

EQtree is counterexample- and equivalence-sound for T'(B). By Fact 3, this implies that
TL*(T', MQ4ree; EQtree) returns a DTA B such that T'(B) = T'(B). The running time is
polynomial since all additional operations in Algorithms 1 and 2 and can be performed in

polynomial time (cf. Fact 2).

To show that MQyee is sound for T'(B), let ¢ € Trees(I'). Assume MQee(t) = yes. By
Algorithm 1, this implies ¢ € T'(Bparse) and MQyp1([t]) = yes. As MQyp is sound for L, we
have [t] € L. Since T(B) = (L)), we get t € T(B). Conversely, assume MQyee(t) = no. If
t & T(Bparse), then t ¢ T(B). So suppose t € T(Bparse) and MQypi([t]) = no. As MQyyp is
sound for L, we have [t] ¢ L, which implies ¢ ¢ T(B).

Let us show that EQqyee is counterexample-sound for T'(B). Suppose B € DTA(T) and ¢ €
Trees(I") such that EQtee(BB) = t. There are two cases. First, suppose t € T'(B) \ T'(Bparse)-
As T(B) € T(Bparse), we have t € T(B)\T(B) and, hence, t € T(B)®T(B). Second, assume
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T(B) C T(Bparse). As EQyp is counterexample-sound for L, this implies [t] € L & [T'(B)].

Due to T(B) = (L)), we get t € T(B) ® T(B).
Finally, we show that EQ;.ee is equivalence-sound for T(B) Suppose B € DTA(T") such
that EQqee(B) = yes. Then, T'(B) C T'(Bparse) and EQypi(B) = yes. As EQyp is equivalence-

sound for L, we get L = [T(B)], which implies T'(B) = T'(B). [ |
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